
Data Science
Pipelines with

{targets}
[Dr. Hanjo Odendaal]

Defence against the
dark arts

a.k.a code entropy

Why pipelines?
When writing code, there are always two people involved: You and Future You... and about 90% of the time Future You
is going to hate how you structured your project 6 months ago.

Without a build automation tool, a pipeline is nothing but a series of scripts that get called one after the other. In most cases
when students start out, the pipeline tends to be one very long script that is usually a ��� and hope as scaffolding that ensures
operations successfully.

• Scripts can, and will, be executed out of order.
◦ if you make a small change in one of your scripts, a logic execution needs to follow to ensure everything is executed in

the correct order.
• Pipelines written as scripts are usually quite dif�cult to read and understand.

◦ Comments help, but has to also be updated as you update your scripts.

These are just some of the basic issues... BUT luckily you have heard of the term "functional" programming. This part of the
course will show you how to supercharge this concept ������!

5 / 32

• What is {targets} ?
• Integrating databases into your {targets} pipeline
• NLP and {targets}

Learning outcomes
Now and then, the bright and shiny objects that we stumble across can turn out to be very useful.

We want to take you on a high-level tour of {targets} . Getting you started with the basics! The rest of the journey is up to you:

6 / 32

The major features of targets include:

• Automation of work�ow
• Caching of work�ow steps
• Batch creation of work�ow steps
• Parallelization at the level of the work�ow

Why is this amazing?

• Return to a project after working on something else and
immediately pick up where you left off without confusion or
trying to remember what you were doing

• If the work�ow changes in any way, only re-run the parts
that that are affected by the change

• Massively scale up the work�ow without changing
individual functions through dynamic branching and
parallelization (advanced)

What is {targets}?
It is a work�ow management package for the R programming language developed and maintained by Will Landau. If some of you
program python / bash you might be familiar or have heard about snakemake or make �les. {targets} is the R equivalent of
make �les as you will see when we run tar_make() to run our pipeline.

All of these characteristics of pipelines give us a high probability of �reproducibility�!

7 / 32

What is a DAG?
DAG or Directed acyclic graph, is a mathematical concept. This "DAG" consists of vertices and edges (also called arcs), with each
edge directed from one vertex to another, such that following those directions will never form a closed loop.

You are constantly thinking about 3 things: Input > function > output.

8 / 32

penguin_csv_�le >

penguins_data_raw(penguin_csv_�le) >

penguins_data(penguins_data_raw)

What is a DAG?
DAG or Directed acyclic graph, is a mathematical concept. This "DAG" consists of vertices and edges (also called arcs), with each
edge directed from one vertex to another, such that following those directions will never form a closed loop.

9 / 32

Ready for the basics!

10 / 32

Pipeline

install.packages("igraph", Ncpus = 4)
install.packages("visNetwork", Ncpus = 4)
install.packages("targets", Ncpus = 4)
install.packages("tarchetypes", Ncpus = 4)

Utilies

install.packages("tidyverse", Ncpus = 4)
install.packages("glue", Ncpus = 4)
install.packages("logger", Ncpus = 4)
install.packages("lubridate", Ncpus = 4)

Modeling

install.packages("ranger", Ncpus = 4)

NLP

install.packages("quanteda", Ncpus = 4)
install.packages("topicmodels", Ncpus = 4)

Time for the setup
Please take a couple of minutes to install these packages (Ncpu parameter for parallel installation):

11 / 32

10�00

library(Texevier)
Input your directory as dir:
dir �� "~/Downloads/"

template_name = "targets_example"
create_template(directory = dir,
 template_name = template_name,
 build_project = TRUE,
 open_project = FALSE)

(base) hanjo@optimus:~/Downloads/targets_example$ tree
.
├── code
│ ├── Data_Create.R
│ └── Example_Plot_Scatter.R
├── data
├── targets_example.Rmd
├── targets_example.Rproj
└── Tex
 ├── EconEJ.bst
 ├── elsevier�harvard.csl
 ├── harvard1.csl
 ├── harvard�stellenbosch�university.csl
 ├── packages.txt
 ├── ref.bib
 └── TexDefault.txt

Time for the setup
�� You always have to work in a Project when working with {targets} otherwise its not going to work! We will use the
Texevier to help us setup that folder.

12 / 32

Sidequest �����������������������
If you want your prompt to show you what Github branch you are on, add the following to your .Rprofile . Easiest is
usethis��edit_r_profile() :

if(requireNamespace("prompt", quietly = TRUE)){
devtools��install_github("gaborcsardi/prompt@x")

 prompt_git �� function(���){
 paste0(

"[", prompt��git_branch(), "]", ">"
)
 }
 prompt��set_prompt(prompt_git)
 rm(prompt_git)
 }

13 / 32

��targets.R

1.0 Setup --------------------------------
options(tidyverse.quiet = TRUE)

library(targets)
library(tarchetypes)

* Libraries ------------------------------
tar_option_set(packages = c(

data
"tidyverse",
"lubridate",
"glue",
"logger",
modeling
"plm",
reporting
"huxtable"

))

Source all of your functions into environment
sapply(list.files("code", full.names = T), source)

README.qmd

���
title: "My readme"
format: html
editor_options:
 chunk_output_type: console
execute:
 echo: false
 eval: false
���

```{r}
library(tidyverse)
library(targets)
```

Execute the pipeline using `tar_make`:

```{r}
tar_make()
```
```

Time for the setup
After you have ensured that you can knit  the �le called: targets_example.Rmd , create a �le called _targets.R  in the parent
folder. Take special note of the _  in the �lename. Also create a README.qmd !

14 / 32



Building �rst
pipeline �



Data
The most obvious step in our data analysis is obviously getting our data into R.

Golden rule:

• If it can be avoided, never transform your data in Excel
• Use R to showcase how you extracted, loaded and transformed (ELT) your data

In your _targets.R  �le, add the following "targets":

# 2.0 Data --------------------------------
target_data_load �� list(
  tar_target(input_file,

"data/Example_data.rds"),
  tar_target(examples_df,
             read_rds(input_file))
)

c(target_data_load)

16 / 32



Data target breakdown
I assign an object of list()  class to my �rst grouping of targets.

target_data_load �� list()

In my �rst target I say that the input of "data/Example_data.rds" should be assigned to input_file :

tar_target(input_file,"data/Example_data.rds")

Secondly I then use input_file  as my input  in the function read_rds  and call that output, example_df :

tar_target(examples_df, read_rds(input_file)

Lastly I concatenate all my groups together:

c(target_data_load)

 I always use a suf�x to help me know what the output type is: *_df , *_list , *_plot , *_write^

17 / 32



To see your pipeline, add the command
tar_visnetwork(targets_only = TRUE, label = "time")

to your Readme.qmd ... you should see the your DAG once
you have run it.

Data
Once you have completed the input into your _targets.R  �le, go to your Readme.qmd  and run the tar_make()  command:

[main]>tar_make()
▶ start target input_file
● built target input_file [1.188 seconds]
▶ start target examples_df
● built target examples_df [0 seconds]
▶ end pipeline [1.249 seconds]

Ok, so what happened and what now? Well, congrats on your running your �rst pipeline!! ��������

18 / 32



Accessing the objects
Loading data into the pipeline is all good, but how can we use it? There is primarily two commands: tar_read  and tar_load .

In the �rst instance you can imagine its like reading in a csv :

[main]>out �� tar_read(examples_df)
[main]>print(out)
# A tibble: 100 × 3
   Height_Score Weight_Score Agility_Score
          <dbl>        <dbl>         <dbl>
1 5.75 6.11 3
2 3.84 3.37 3
3 5.71 2.86 3
4 6.02 5.59 3
5 6.56 6.48 3

Where in the case of tar_load  the object is loaded into your environment and you can then use it:

[main]>tar_load(examples_df)
[main]>print(examples_df)

19 / 32



How much a target should do?
The {targets}  package automatically skips targets that are already up to date, so it is best to de�ne targets that maximize time
savings and breaks down the analytical work into succinct problem de�nitions: (1) Read, (2) Augement, (3) Analyse etc. Good
targets usually:

• Invoke no side effects such as modi�cations to the global environment!
• Are large enough to subtract a decent amount of runtime when skipped
• Are small enough that some targets can be skipped even if others need to run
• Return a single value that is:

◦ Easy to understand and introspect.
◦ Meaningful to the project.
◦ Easy to save as a �le

Think of organising your pipeline as a package. ��������

20 / 32



Adding modeling component to pipeline
I would bet most pipelines dont just want to read data, but analyse them. So, how do we do that? Well lets start by creating a
new script for our "modeling" functions: code/models.R :

Basic Model:

model_lm �� function(examples_df){
    lm(Agility_Score ~., data = examples_df)
}

Interaction Model:

model_lm_interactions �� function(examples_df){
    lm(Agility_Score ~ Height_Score*Weight_Score, data = examples_df)
}

 Take note of how I specify the input name the same as my previous output. You will thank me later ;-)*

21 / 32



Adding modeling component to pipeline
Once you have saved the R �le, we need to now add the functions to our pipeline in _targets.R :

# 2.0 Data --------------------------------
target_data_load �� list(
    tar_target(input_file,

"data/Example_data.rds"),
    tar_target(examples_df,
               read_rds(input_file))
)

# 3.0 Model -------------------------------
target_model �� list(
    tar_target(model_lm_model,
               model_lm(examples_df)),
    tar_target(model_lm_interactions_model,
               model_lm_interactions(examples_df))
)

c(target_data_load,
  target_model)

22 / 32



Adding modeling component to pipeline
Now that you have added in the new targets. Have a look at your DAG:

Then, you have guessed it, time to run tar_make() :

[main]>tar_make()
✔ skip target input_file
✔ skip target examples_df
▶ start target model_lm_model
● built target model_lm_model [0.012 seconds]
▶ start target model_lm_interactions_model
● built target model_lm_interactions_model [0.001 seconds]
▶ end pipeline [1.213 seconds]

23 / 32



Visualise results
Models in themselves arent that useful. Lets extract the RMSE using yardstick  to compare which model was a better �t and
then compare them visually. Because we want to apply the same action on the model, we only going to need a single function!
In the code/models.R  �le lets add a function to extract the models' RMSE.

extract_rmse �� function(model, examples_df, model_name){

    out �� tibble(truth = examples_df$Agility_Score,
           prediction = predict(model, examples_df))
    model_summary �� yardstick��rmse(out, truth, prediction) %>%
        janitor��clean_names() %>%
        mutate(model_name = model_name)

return(model_summary)
}

24 / 32



Visualise results
In _targets.R :

target_model �� list(

    tar_target(model_lm_model_rmse,
               extract_rmse(model_lm_model,
                            examples_df,
                            model_name = "model_lm")),
    tar_target(model_lm_interactions_model_rmse,
               extract_rmse(model_lm_interactions_model,
                            examples_df,
                            model_name = "model_lm_interactions"))

)

    tar_target(model_lm_model,
               model_lm(examples_df)),
    tar_target(model_lm_interactions_model,
               model_lm_interactions(examples_df)),

25 / 32



plot_rmse �� function(model_lm_model_rmse, 
                      model_lm_interactions_model_rmse){

    bind_rows(model_lm_interactions_model_rmse,
              model_lm_model_rmse) %>%
        mutate(model_name = snakecase��to_title_case(model_name)) %>%
        ggplot(., aes(model_name, estimate,
                      color = model_name, pch = model_name)) +
        geom_point(size = 5) +
        scale_color_grey(
            start = 0.2,
            end = 0.6
        ) +
        labs(
            y = "RMSE",
            x = "Model Specification",
            color = ""
        ) +
        ggthemes��theme_stata(base_size = 20) +
        theme(plot.background = element_rect(fill = "white")) +
        theme(legend.position = "bottom") +
        guides(pch = "none")
}

    tar_target(plot_rmse_gg,
               plot_rmse(model_lm_model_rmse,
                         model_lm_interactions_model_rmse))

Visualise results
Now lets plot the RMSE!

# 3.0 Model -------------------------------
target_model �� list(
    tar_target(model_lm_model,
               model_lm(examples_df)),
    tar_target(model_lm_interactions_model,
               model_lm_interactions(examples_df)),
    tar_target(model_lm_model_rmse,
               extract_rmse(model_lm_model,
                            examples_df,
                            model_name = "model_lm")),
    tar_target(model_lm_interactions_model_rmse,
               extract_rmse(model_lm_interactions_model,
                            examples_df,
                            model_name = "model_lm_interactions")),

)

26 / 32



plot_rmse �� function(model_lm_model_rmse, 
                      model_lm_interactions_model_rmse){

    bind_rows(model_lm_interactions_model_rmse,
              model_lm_model_rmse) %>%
        mutate(model_name = snakecase��to_title_case(model_name)) %>%
        ggplot(., aes(model_name, estimate,
                      color = model_name, pch = model_name)) +
        geom_point(size = 5) +
        scale_color_grey(
            start = 0.2,
            end = 0.6
        ) +
        labs(
            y = "RMSE",
            x = "Model Specification",
            color = ""
        ) +
        ggthemes��theme_stata(base_size = 20) +
        theme(plot.background = element_rect(fill = "white")) +
        theme(legend.position = "bottom") +
        guides(pch = "none")
}

Visualise results
Now lets plot the RMSE!

27 / 32



plot_rmse �� function(model_lm_model_rmse, 
                      model_lm_interactions_model_rmse){

    bind_rows(model_lm_interactions_model_rmse,
              model_lm_model_rmse) %>%
        mutate(model_name = snakecase��to_title_case(model_name)) %>%
        ggplot(., aes(model_name, estimate,
                      color = model_name, pch = model_name)) +
        geom_point(size = 5) +
        scale_color_grey(
            start = 0.2,
            end = 0.6
        ) +
        labs(
            y = "RMSE",
            x = "Model Specification",
            color = ""
        ) +
        ggthemes��theme_stata(base_size = 20) +
        theme(plot.background = element_rect(fill = "white")) +
        theme(legend.position = "bottom") +
        guides(pch = "none")
}

Visualise results
Now lets plot the RMSE!

28 / 32



Step 1: Make sure you have library(targets)  in your
setup chunk.

Step 2: Use tar_read  or tar_load  in article.Rmd .

Step 3: Build the render into your pipeline _targets.R :

target_render �� list(
    tar_render(report, "article.Rmd")
) 

  target_render)

Step 4: View your network to see that the correct outputs go in
article:

Step 5: Run tar_make() , sit back and marvel at your work in
glory.

Integrate all into report
So why did we start with Texevier ? Because we want our article to update if we make a change... the last piece of the puzzle is
to render the article.Rmd :

# 4.0 Model -------------------------------

c(target_data_load,
  target_model,

29 / 32



Are you not entertained?
If its good enough for Taylor  its good enough for you...*

approximation*

30 / 32



Homework ��������������������
(jip)



Homework
Using the techniques of today, transform the "script" based �ow from the practical Tidy Regressions into a pipeline.

The assignment is simple:

• Create a new project
• Setup project for {targets}
• Change the "chunks" into functions
• Create a pipeline to bring in data, run models and output plot
• Run pipeline from section Load Data  to Backward Selection

... in the next lesson we will be introducing the concept of "databases".

32 / 32

https://datsci.nfkatzke.com/posts/2024-03-04-tidyregressions/notes/tidyregress#Load_data
https://datsci.nfkatzke.com/posts/2024-03-04-tidyregressions/notes/tidyregress#Load_data

