
Databases �����������
[Dr. Hanjo Odendaal]

Why do we use databases?

2 / 44

Why do we use databases?
Although there are many reasons to shift from using Excel to databases, the most important cornerstones are: (i) Data
Integrity, (ii) Redundancy, (iii) Error prone, (iv) User Access and Security and (v) Data Accessibility and Speed.

Data Integrity:

• There are a set of rules that govern the structure of the data, how different information relate to one another and also
what input can be put into a certain column of a table (ex. numeric vs string).

• These rules and protocols build a general framework under which everyone must adhere to, and as such, increases
reliability of the data.

• It also removes questions like "What do I do when I get new data? Where do I store that data? How must the data
look?".

• Excel is limited to 1,000,000 rows of data in a single sheet. If you operating at close to the edge of that amount of data
how dif�cult to you think it is to ensure the quality of the information?

3 / 44

Why do we use databases?
Redundancy:

• I think all of us know version control of �les that are called final_analytics_tom_v2.3_client_clean.xlsx . These �les
eventually just become copies of the same data with small changes that are dif�cult to track and keep clean.

• Using relational databases also ensures that we separate information out across tables to ensure we do not have
multiple versions of the same data in different places. Example would be to separate out customers and their
purchases.
◦ When updating a customer's information, we only have to update the customers table and not the purchases

tables, as the purchases table only links back to the customer via a unique id (also called a key) of some sort.

Error prone:

• Excel sheets (as we saw earlier) is very much susceptible to proliferation of errors, especially when the data gets large.
There is no way of know what changed and how when someone accidentally overwrites a cell/row/column.

• Also, because sheets are usually linked together, if the sheet changes unexpectedly (perhaps someone added a
column), suddenly the formulas are no longer correct or links to the data are broken.

4 / 44

Why do we use databases?
Access and Security:

• Multiple users can work on a database at the same time. Most of the time end-users only need to collect or aggregate
data for their purposes, which means we can create specials user that are only allowed those operations. This ensures
that the risk of unknowledgeable users do not accidentally change the underlying data without them knowing.

• With personal information protection laws coming into force, one also wants to restrict access to certain types of
information by only granting access to those who have the right clearance .

Data Accessibility and Speed:

• Ain't no one got time to work on an Excel sheet over 10,000 rows. Having to quickly analyse information using
aggregation tools such as pivot or vlookups becomes a total nightmare. Excel is dynamic, which means every action
causes all the information to automatically recalculate.

• Databases allows you to do deep analysis of data over millions (even billions) of rows of data in seconds.
• Because you most likely will be using a relational setup in a database, you only query the data you need, not the whole

information set.

1

 Please do NOT ever send personal information in plain text in Excels spreadsheets over email, unless you want to end up in jail. ��1

5 / 44

Different database types

link to original website*

6 / 44

https://1bpezptkft73xxds029zrs59-wpengine.netdna-ssl.com/wp-content/uploads/differences-between-sql-databases-and-nosql-databases.png
https://1bpezptkft73xxds029zrs59-wpengine.netdna-ssl.com/wp-content/uploads/differences-between-sql-databases-and-nosql-databases.png
https://1bpezptkft73xxds029zrs59-wpengine.netdna-ssl.com/wp-content/uploads/differences-between-sql-databases-and-nosql-databases.png
https://1bpezptkft73xxds029zrs59-wpengine.netdna-ssl.com/wp-content/uploads/differences-between-sql-databases-and-nosql-databases.png

RDMS database example data schema

link to original website*

7 / 44

https://towardsdatascience.com/data-analysis-in-mysql-operators-joins-and-more-in-relational-databases-26c0a968e61e
https://towardsdatascience.com/data-analysis-in-mysql-operators-joins-and-more-in-relational-databases-26c0a968e61e
https://towardsdatascience.com/data-analysis-in-mysql-operators-joins-and-more-in-relational-databases-26c0a968e61e
https://towardsdatascience.com/data-analysis-in-mysql-operators-joins-and-more-in-relational-databases-26c0a968e61e

Different database structures

Do note, that although we do not cover OLAP database in this course, they tend to be a little bit different as they try
to avoid complex joins which could slow down analytics.

Database structures, or schema design, depends a lot on the application of the database. Although there are different
schemas and designs, they do have some common traits:

• Includes the name of the �elds in the table.
• The type that the �eld consists of (numeric, date, varchar etc.).
• Associations and keys linking �elds.

Common schemas that you might encounter are:

• Star schema
• Snow�ake schema
• Fact constellation

8 / 44

Different database structures
To understand schemas a bit better, we need an understanding of the pieces. The two most important components consist
of: fact and dimension tables.

FACT:

• Fact table contains measurements, metrics, and facts about a business process
◦ ex. sales or webpage visits.

• Fact tables form the primary table of the design and are usually normalized
◦ We assign a numerical number or code to an attribute for better performance
◦ An example of this would be where we code GENDER as 1 for male and 2 for female.

DIMENSION:

• Provides the information about the facts
◦ ex. location of transaction, customer

• These tables are de-normalized and have to be joined to the fact table table before analysis can happen.
• The tables also usually contain descriptions of the �eld in order to make it easier to understand.

9 / 44

Different database structures: Star Schema
Star schema design has only one fact table and multiple dimension tables. This is a very common design as its
relational properties are easily understood.

10 / 44

Different database structures: Snow�ake Schema
Snow�ake schema design extends the Star Schema by only one fact table, multiple dimension tables, each with
their own dimension tables. This adds another layer of abstration to the dimension tables and could contain
additional information about attributes not in use every day.

11 / 44

Basic SQL ⚒

1) Connect to DB using variables from the Environment

2) Either read or write and then

3) ...make sure that if the function exits, we disconnect

... dont worry if you feel like this ...

Jumping in with both feet
In an advanced Database course you should cover databases, its setup and optimization in much more depth.
But for now, lets focus on getting you writing SQL queries and leave the database setup to the DBA.

To learn SQL, one needs to have a database. I have partitioned a DB for each of you! We are going to need mostly functions
for this exercise: db_query and db_write . These functions are going to have the same format:

13 / 44

Step 0: Specify your project variables in .Renviron ,
usethis��edit_r_environ()

gp_data = datascience
gp_user = datascience
gp_pass = f5VPEC8nsU01QKbSxSfv
gp_host = localhost
gp_port = 3141

Step 1: Connect to DB using variables from the Environment
using dbbasic

remotes��install_github("HanjoStudy/dbbasic")
library(dbbasic)
conn �� db_connect(db = "psql_datascience")
DBI��dbDisconnect(conn)

Jumping in with both feet
����� Tip: In copy paste this! No need to reinvent the wheel �����

14 / 44

The aim is to assist and facilitate R programmers with
interacting with databases without too much cognitive
overhead:

• Read
• Write
• Connect

It also has some very nice utilities:

• db_collapes - if you need to collapse a vector for
an IN style query

• hash - creates a SHA256 hash
• tibble_to_sql - helps with boilerplate

What is dbbasic?
dbbasic is a little passion project from when I worked at 71point4. You can �nd it HERE

https://github.com/HanjoStudy/dbbasic/tree/master

15 / 44

https://www.71point4.com/
https://www.71point4.com/
https://github.com/HanjoStudy/dbbasic/tree/master
https://github.com/HanjoStudy/dbbasic/tree/master
https://github.com/HanjoStudy/dbbasic/tree/master
https://github.com/HanjoStudy/dbbasic/tree/master

Rstudio + dbbasic?
To use dbbasic in R, create a new dev.sql �le in your project and add �� !preview conn=db_connect(db =
"psql_datascience") to the top of the �le.

�� For this to work your .Renviron �le in your project directory must be set up correctly!

�� !preview conn=db_connect(db = "psql_datascience")

SELECT * FROM gumtree LIMIT 10

And then press CTRL + SHIFT + ENTER for magic �������������

You can also do some very clever things with dbbasic + Quarto + SQL chunks ... but thats for another day.*

16 / 44

The KING of all statements: SELECT
The way to think about SQL is in terms of english commands. Also, also start from the inside and work your way out (you
will see what I mean). �� It is good practice to always end your statements with LIMIT 10 until you are sure that the correct
results is returned. Working on billion row tables and forgetting to limit your results can crash tables.

Lets start with the two statements you will most likely use every day:

• Counting how many rows there are

SELECT COUNT(*) FROM gumtree LIMIT 10;

db_query("SELECT COUNT(*) FROM gumtree LIMIT 10;", db = "psql_datascience")

• Getting a 10 row sample

SELECT * FROM gumtree LIMIT 10;

db_query("SELECT * FROM gumtree LIMIT 10;", db = "psql_datascience")

17 / 44

The KING of all statements: SELECT
Previously I decided I wanted to return all the columns (*), but what if I only want to return one or two of the columns?

SELECT {column1}, {column2} FROM table LIMIT 10;

Lets only return dwelling_type , size_sqm and price :

SELECT dwelling_type, size_sqm, price FROM gumtree LIMIT 10;

�� It is good practice to not have long SQL statements in one row.

Code Needs a lot of whitespace.
That is how it breaths

— Roger Peng, Jenny Bryan, useR 2018

18 / 44

https://www.youtube.com/watch?v=7oyiPBjLAWY?t=32m45s
https://www.youtube.com/watch?v=7oyiPBjLAWY?t=32m45s

The KING of all statements: SELECT
Lets build a bigger SELECT statement (I like 3 tab indentation):

SELECT
 dwelling_type,
 bedrooms,
 bathrooms,
 parking,
 size_sqm,
 price
FROM gumtree
LIMIT 10;

19 / 44

SELECT but with �lter criteria
What happens if we only want to return an ad of a certain type?

Well, then we can employ the WHERE statement. We are going to collect the same columns as previously, but now we will
specify the WHERE criteria on dwelling_type column where equal to house :

SELECT
 dwelling_type,
 bedrooms,
 bathrooms,
 parking,
 size_sqm,
 price
FROM gumtree
WHERE
 dwelling_type = 'house'
LIMIT 10;

Quick Practice:, write the code to bring back 100 examples where there is parking and ORDER BY price. TIP: Please google
"psql �lter NOT NULL on column"

20 / 44

SELECT but with �lter criteria and order
In certain circumstances, it is necessary to order your data to get the correct output. For instance if we want to get the top
10 largest size_sqm houses:

SELECT
 dwelling_type,
 bedrooms,
 bathrooms,
 parking,
 size_sqm,
 price
FROM gumtree
WHERE
 dwelling_type = 'house'

AND size_sqm IS NOT NULL
ORDER BY
 size_sqm DESC
LIMIT 10
;

21 / 44

Lets clean and upload a clean version!
By now you would have seen that price and size_sqm and price is not in the correct format... Lets �x that:

1) Pull whole database into R, 2) Fix size_sqm and price , 3) Upload to new table called gumtree_clean

(1) Pull whole database into R & (2) Fix size_sqm and price

library(dplyr)
gumtree_clean �� db_query("SELECT * FROM gumtree;", db = "psql_datascience") %>%
 mutate(size_sqm = as.numeric(size_sqm)) %>%

remove all except numbers
 mutate(price = as.numeric(gsub("[^0-9]+", "", price)))

(3) Upload to new table called gumtree_clean

db_write(gumtree_clean, "gumtree_clean", db = "psql_datascience")
db_query("DROP TABLE gumtree_clean", db = "psql_datascience")
db_write(gumtree_clean, "gumtree_clean", db = "psql_datascience")

db_query("SELECT * FROM gumtree LIMIT 10;", db = "psql_datascience")

22 / 44

WELL DONE!!!

23 / 44

Time for security ��
I have set your password for you, but given that you are a super user, you can now make your password whatever you want!

• This will also ensure that someone doesn't mess with your sever

ALTER USER datascience WITH PASSWORD 'XXX';

24 / 44

Aggregations (Pivoting) in SQL
Pivoting forms part of the aggregation function of SQL. This helps us answer questions like:

• What is the average price of houses by dwelling_type ?
• Total value and volume per location?

As you can see, aggregations or GROUP BY clauses gets used OFTEN, so learn it well and get comfortable with it.

25 / 44

SELECT
 dwelling_type,

AVG(price) as mean_price
FROM gumtree_clean
WHERE
 price IS NOT NULL
GROUP BY
 dwelling_type
ORDER BY

AVG(price) DESC
LIMIT 10
;

db_query("
 SELECT
 dwelling_type,
 AVG(price) as mean_price
 FROM gumtree_clean
 WHERE
 price IS NOT NULL
 GROUP BY
 dwelling_type
 ORDER BY
 AVG(price) DESC
 LIMIT 10
 ; ", db = "psql_datascience")

Aggregations (Pivoting) in SQL
What is the average price of houses by dwelling_type ?

Once you are comfortable that you have the query correctly speci�ed, drop the LIMIT and scroll through your magni�cent
piece of work!

26 / 44

SELECT
 location,

COUNT(*) AS volume,
SUM(price) AS value

FROM
 gumtree
GROUP BY
 location
LIMIT 10
;

db_query("
 SELECT
 location,
 COUNT() AS volume,
 SUM(price) AS value,
 SUM(price)/COUNT() avg_price
 FROM
 gumtree_clean
 GROUP BY
 location
 ORDER BY
 SUM(price) DESC
 LIMIT 10
 ;", db = "psql_datascience")

Aggregations (Pivoting) in SQL
Total value and volume per location?

Notice how I ALIAS my aggregations as {aggregation} then
{name}. This will make your life a lot easier and in some case
it is mandatory... as in joins.

27 / 44

Last but not least: JOINS
By now you are asking yourself, if we designed our database in the beautiful star schema that we talked about earlier, how
do we join all the information together again? This is where JOINS come in and there are a multitude of them. Most
important one is LEFT JOIN and INNER JOIN :

28 / 44

Last but not least: JOINS
Lets attempt a basic join before we combine joins with aggregations. To start off we will JOIN the gumtree_descriptions
table onto the gumtree_clean table:

• First check what tables are available:

db_query("SELECT * FROM pg_catalog.pg_tables WHERE schemaname = 'public'", db = "psql_datascience")

• Next get a sample of rows from gumtree_descriptions :

db_query("SELECT * FROM gumtree_description LIMIT 10", db = "psql_datascience")

From this we see that gumtree_clean.ad_id = gumtree_descriptions.ad_id !

29 / 44

When name is the same in both table

SELECT
 *
FROM gumtree_description
LEFT JOIN(

SELECT * FROM gumtree_clean
) tbl_clean
USING(ad_id)
;

When they are different

SELECT
 *
FROM gumtree_descriptions
LEFT JOIN(

SELECT * FROM gumtree_clean
) tbl_clean
ON gumtree_clean.ad_id = gumtree_descriptions.ad_id
;

Last but not least: JOINS
Now that we have the speci�c keys from the different tables, there are two ways to join: (1) When name is the same in both
table, (2) When they are different:

• Important to note the ALIAS of the inner table called tbl_clean .

30 / 44

Last but not least: JOINS
There are ways to optimize your joins to be extremely fast. Although we do not cover these in this course, it is interesting
and worth knowing none the less.

• One is keys (which is why we use primary and muli keys in tables).
• Another is query optimization through column selection and subqueries.

◦ Although we do not cover these in this course, having knowledge of advance backend mechanics can sometimes
take your execution time from days to minutes.

31 / 44

Bonus Round: CTEs

32 / 44

Common Table Expressions
This is the %>% equivalent for SQL. The structure is quite simple:

WITH cte_one AS(
���some SQL���
), cte_two AS(
���do something with cte_one���
)
SELECT * FROM cte_two

These are quite 'advanced' topics, but can promise you once you start using them you wont go back to subqueries .

Now lets move on to asking practical questions

What are the top words associated with a property advert? ������

1

If you want to know why I say that, go read up on subqueries.1

33 / 44

Case Study

34 / 44

WITH cte_one AS(
SELECT ad_id,

 REGEXP_REPLACE(LOWER(description), '[^A-Za�z]'
FROM gumtree_description

)
SELECT * FROM cte_one LIMIT 10;

Case Study: Property
Step 1: I know we are going to need to remove useless words (stopwords) such as "a", "the" etc. So lets upload a stopwords
table to our DB:

db_write(tidytext��stop_words, table_name = "stopwords", db = "psql_datascience")

Step 2: Cleaning the text of puncuation:

35 / 44

WITH cte_one AS(
SELECT ad_id,

 REGEXP_REPLACE(LOWER(description), '[^A-Za�z]'
FROM gumtree_description

), cte_two AS(
SELECT ad_id,

TRIM(REGEXP_SPLIT_TO_TABLE(LOWER(description),
FROM cte_one

)
SELECT * FROM cte_two LIMIT 10

Case Study: Property
Step 3: Tokenise the long text into words

36 / 44

WITH cte_one AS(
SELECT ad_id,

 REGEXP_REPLACE(LOWER(description), '[^A-Za�z]', '', 'g') AS description
FROM gumtree_description

), cte_two AS(
SELECT ad_id,

TRIM(REGEXP_SPLIT_TO_TABLE(LOWER(description), '\s�')) AS tokens
FROM cte_one

), cte_three AS(
SELECT *
FROM cte_two
WHERE tokens NOT IN (SELECT DISTINCT word FROM stopwords)

), cte_four AS(
SELECT ad_id,

 tokens,
COUNT(*) as obs,

 ROW_NUMBER() OVER (
PARTITION BY ad_id
ORDER BY COUNT(*) DESC

) as rank
FROM cte_three
GROUP BY ad_id,

 tokens
)
SELECT * FROM cte_four LIMIT 10

Case Study: Property
Step 4: Remove stopwords and GROUP BY count words per ad_id

37 / 44

WITH cte_one AS(
SELECT ad_id,

 REGEXP_REPLACE(LOWER(description), '[^A-Za�z]', '', 'g') AS description
FROM gumtree_description

), cte_two AS(
SELECT ad_id,

TRIM(REGEXP_SPLIT_TO_TABLE(LOWER(description), '\s�')) AS tokens
FROM cte_one

), cte_three AS(
SELECT *
FROM cte_two
WHERE tokens NOT IN (SELECT DISTINCT word FROM stopwords)

), cte_four AS(
SELECT ad_id,

 tokens,
COUNT(*) as obs,

 ROW_NUMBER() OVER (
PARTITION BY ad_id
ORDER BY COUNT(*) DESC

) as rank
FROM cte_three
GROUP BY ad_id,

 tokens
), cte_five AS(

SELECT ad_id,
 STRING_AGG(tokens �� '(' �� CAST(obs AS VARCHAR) �� ')',', ') AS top_words

FROM cte_four
WHERE rank �� 10
GROUP BY ad_id

)
SELECT * FROM cte_five LIMIT 10;

Case Study: Property
Final Step: Concatenate the token and observation and �lter where less than 10

38 / 44

VSCode �����

• Interact with a remote server
• Connect to database on remote server
• Execute code and download results

Learning to code in VSCode
Why switch from RStudio to VSCode for SQL development?

The �rst few things we are gonna do in VSCode is:

40 / 44

• R Extension for Visual Studio Code
• Spelling Checker for Visual Studio Code
• SQLTools

Installing the recommended Extension
Installing Extensions in VSCode is pretty straight forward. Just navigation to the search tab using GUI. Then search and install the
following:

41 / 44

Connecting to DB
After installing VScode, you should see a SQLTools icon in the left-hand bar:

42 / 44

Connecting to DB
We can now add a new connection to a DB.

�� If you do not see PostgreSQL, then just click on 'Get More Drivers' and search for 'SQLTools PostgreSQL/Cockroach Driver'.

43 / 44

Connecting to DB
In the last step we going to �ll in the connection strings (On the next slide):

44 / 44

