

NLP 💬

[Dr. Hanjo Odendaal]

First things first, lets install the necessary packages that we will need in this lesson as well as create the necessary files to fit everything in a targets pipeline:

Step 1: Install Packages

```
install.packages("tidytext", Ncpus = 4)
install.packages("quanteda", Ncpus = 4)
install.packages("topicmodels", Ncpus = 4)
install.packages("ggwordcloud", Ncpus = 4)
```

Step 2: Create Folder for Analysis

Step 3: Create Readme.qmd file

```
title: "My readme"
format: html
editor_options:
   chunk_output_type: console
execute:
   echo: false
   eval: false
```

library(tidyverse)
library(targets)
library(dbbasic)
library(tidytext)
library(quanteda)
library(topicmodels)
library(ggwordcloud)

Step 4: Create .Renviron file

usethis::edit_r_environ()

gp_data = datascience
gp_user = datascience
gp_pass = f5VPEC8nsU01QKbSxSfv
gp_host = localhost
gp port = 3000

Step 6: Restart Rstudio and Test!

```
db_query(
   "SELECT * FROM
   pg_catalog.pg_tables
   WHERE schemaname ='public';"
   , db = "psql_datascience")
```

Phew

NLP Basics

In this session we will be exploring the basics of Natural Language Processing:

Exploratory Analysis:

Concordancing

• Extraction of words from a given text or texts conditional on a context window

Ngrams

- Basic word counts from texts
- Creating word clouds from the text

Modeling:

Sentiment Analysis

• Using dictionary methods

Topic Modeling (Bonus)

 Text > Tokens > Document Frequency Matrix > Topic Model

First things first: Data

Our data is currently stored in a cloud Database. Pull the **sales** data into your session using the **dbbasic** package. Remember to open a dev.sql file to test your queries from inside R!:

• Quick look at what the database table contains again:

-- !preview conn=db_connect(db = "psql_datascience")

SELECT * FROM gumtree_clean LIMIT 10;

type	ad_id	ad_url	location	for_sale_by	dwelling_type	bedrooms	bathrooms	size_sqm	parking	price	available_from	for_rent_by	furnished	smoking	pet_friendly	description
sales	1b4d044419256d4999586eaee6baca8c	https://www.gumtree.co.za/a-houses-flats-for-sale/b	bantry_bay_atlantic_seaboard	agency	apartment			3 5	46 garage	39995000						This incredible property in a reno
sales	991f741a8f3619089ba10cae7d5b4072	https://www.gumtree.co.za/a-houses-flats-for-sale/b	bantry_bay_atlantic_seaboard	agency	apartment		:		11 garage	11500000	NA	NA	NA		NA	RE/MAX Living operates in terms
sales	f9a57d1d6310bc561da6d86ec3fb6f53	https://www.gumtree.co.za/a-houses-flats-for-sale/b	bantry_bay_atlantic_seaboard	agency	apartment		:		18 covered	16995000						Asking Price: R 16 995 000Nestle
sales	8b3c83c89488ee15eb5a441360ef44df	https://www.gumtree.co.za/a-houses-flats-for-sale/b	bantry_bay_atlantic_seaboard	agency	house			3 5	89 garage	19500000	NA			NA	NA	RE/MAX Living operates in terms
sales	0a0f80664100990b7ebc40169081fd79	https://www.gumtree.co.za/a-houses-flats-for-sale/b	bantry_bay_atlantic_seaboard	agency	house		1	1 1	38 covered	14500000						RE/MAX Living operates in terms
sales	812555990c3cede1ccf24b07fc85800a	https://www.gumtree.co.za/a-houses-flats-for-sale/b	bantry_bay_atlantic_seaboard	agency	apartment		:		18 garage	14600000			NA		NA	RE/MAX Living operates in terms
sales	c2c7c97fbd2cc996cee5b0821177a259	https://www.gumtree.co.za/a-houses-flats-for-sale/b	bantry_bay_atlantic_seaboard	agency	apartment			3 3	01 covered	12995000						Exclusive Mandate Asking Price:
sales	cc71a7903344e3d7debca37f13a48d01	https://www.gumtree.co.za/a-houses-flats-for-sale/b	bantry_bay_atlantic_seaboard	agency	apartment		2	2 1	18 covered	16995000	NA	NA		NA	NA	Aurum Luxury Residences introdu
sales	844b53eb84712852ce4241ddca268f2c	https://www.gumtree.co.za/a-houses-flats-for-sale/b	bantry_bay_atlantic_seaboard	agency	apartment		:		69 NA	4650000						RE/MAX Living operates in terms
sales	2dd9514800082e2e3ce91f973151a338	https://www.gumtree.co.za/a-houses-flats-for-sale/b	bantry_bay_atlantic_seaboard	agency	apartment		1		NA NA	4650000	NA	NA	NA	NA	NA	Nestled along the picturesque Be

First things first: Data

• What are the different variables within the type column?

SELEC	T
t	ype,
C	COUNT(*)
FROM	gumtree_clean
GROUP	BY
t	уре
LIMIT	10;

• Filter the dataset to only bring in **sales** into R environment:

```
gumtree_texts ← gumtree %>% select(ad_id, description) %>%
mutate(description = tolower(description))
```


Case Study: 'Ocean'

Concordancing

As mentioned, "concordancing" is where we would like to see what how words a are used in context, or "keywords-incontexts" analysis. Let us use the kwic function from quanteda to see how the word **ocean** is used in the text.

ocean_kwic ← kwic(
# define text		
<pre>gumtree_texts\$description,</pre>		
# define search pattern		
pattern = "ocean",		
# define context window size		
window = 5) %>%		
as tibble		
# [main]>ocean_kwic		
# A tibble: 1,772 × 7		
# docname from to pre	keyword post	pattern
# <chr> <int> <int> <chr></chr></int></int></chr>	<chr> <chr></chr></chr>	<fct></fct>
# 1 text1 16 16 has views overlooking the open	ocean , robben island and on	ocean
# 2 text3 116 116 stunning vistas of the azure	ocean that greet you from every	ocean
# 3 text5 134 134 unobstructed views of the atlantic	ocean from every angle along with	ocean
# 4 text7 85 85 panoramic views of the atlantic	ocean and lion's head , emphasising	ocean
# 5 text7 281 281 views of the majestic atlantic	ocean . designed with entertainment in	ocean
# # 1,762 more rows		
# # i Use `print(n =)` to see more rows		

Concordancing

We can also extract exact phrases, by using the function phrase():

ocean_kwic ← # define text gumtree_text # define set pattern = pl # define cont window = 5) as_tibble	kwic(xt ts\$desc arch pa nrase(" ntext w %>%	riptio attern blue c vindow	n, cean"), size			
# [main]>ocea	n_kwic					
# A tibble: 6	× 7					
# docname	from	to	pre	keyword	post	pattern
# <chr></chr>	<int></int>	<int></int>	<chr></chr>	<chr></chr>	<chr></chr>	<fct></fct>
# 1 text5849	78	79	the view of the wide	blue ocean	stretching to the horizon .	blue ocean
# 2 text6106	124	125	with sliding windows overlooking the	blue ocean	! with its stunning ocean	blue ocean
# 3 text6160	100	101	up to the most bright	blue ocean	views . neutral colour palette	blue ocean
# 4 text12564	67	68	by the beauty of the	blue ocean	shimmering through glass windows and	blue ocean
# 5 text12605	255	256	onto table mountain with the	blue ocean	at its feet , complete	blue ocean
# 6 text14439	42	43	sands beach with its beautiful	blue ocean	right on your doorstep ?	blue ocean

Concordancing

Exercise time!

• How many instances are there of "swimming pool"?

Ngrams

Ngrams forms the basis of most text analysis. It is the fundamentals of *tokenization* or breaking up texts into words or sequences of words. Lets take our ocean example a little bit further and analyse the top words (after *stopwords*) within the contexts of the 'ocean' in property ads.

We are going to use a really nice function from tidytext called unnest_tokens for this.

• Combine the pre and post columns into one:

ocean_pre_post ← ocean_kwic %>% unite("text", c(pre, post)) %>% select(docname, text)

```
# A tibble: 1,772 × 2
```

```
# docname text
```

```
# <chr> <chr>
```

- # 1 text1 has views overlooking the open_, robben island and on
- # 2 text3 stunning vistas of the azure_that greet you from every
- # 3 text5 unobstructed views of the atlantic_from every angle along with
- # 4 text7 panoramic views of the atlantic_and lion's head , emphasising

Ngrams

Now that we have our text ready, lets create unigrams or single word tokens from the text.

```
ocean_tokens ← ocean_pre_post %>% unnest_tokens(input = text, output = word, n = 1)
```

1. We need to now get rid of stopwords or words like 'the', 'a' or 'on' as these do not add contextualization.

```
ocean_tokens ← ocean_tokens %>%
mutate(word = gsub("_", "", word)) %>% anti_join(stop_words, by = join_by(word))
```

A tibble: 8,890 × 2
docname word
<chr> <chr> # 1 text1 views
2 text1 overlooking
3 text1 open
4 text1 robben

5 text1 island

Plotting the word clouds

Once the text is in a nice tidy format, we can now do a lot with it... first lets plot the clouds to see what are the words closely associated around the 'ocean':

Plotting Bi-Grams (Bonus)


```
ocean pre post %>%
  unnest tokens(input = text, output = word,
                token = "ngrams", n = 2) %>%
  mutate(word = gsub(" ", "", word)) %>%
  separate(word, c("word1", "word2"), sep = " ") %>
  filter(!word1 %in% stop words$word) %>%
  filter(!word2 %in% stop words$word) %>%
  unite(bigram, word1, word2, sep = " ") %>%
  count(bigram, name = "obs", sort = TRUE) %>%
  sample frac(weight = obs, size = 0.1) %>%
  ggplot(., aes(label = bigram, size = obs,
                color = obs)) +
  geom text wordcloud() +
  scale color gradient(low = "#189bcc",
                       high = "#960018") +
  scale size area(max size = 20) +
  theme minimal()
```

offering breathtakingviewspectacular views uninterrupted vievoanoramic views thoughtfully designed Stunning VIEWS views expansi GOUKOU rive atlantic situated additional and a source at a sourc spacious bedrooms unobstructed view index in the rupted visit 2929224 m in the chinato installed is measured in the information in the chinato installed is measured in the information in the chinato installed is measured in the information in the chinato installed is measured in the information in the chinato installed is measured in the information in the chinato installed is the chinato i state blate trail the taking throoms loftdian cliffs coastal breezed on tacingooking of the taking throoms loftdian cliffs coastal breezed on tacingooking of the taking throoms loftdian cliffs coastal breezed on tacingooking of the taking the taking the taking the taking the taking easy accessfering captivating access prestraking views metaling views in the main bedroon and the second metalicity of the sec family homa De gorgeous goukotheand mountainsarm indianwashe balcony overlooking serene beautyptimise mountain mesmerizingbackdrop create breathtaking views

Modeling

Sentiment analysis in action

Provided that you now have the basics of text analysis and how to get from text > tokens, we can now apply some basic modeling techniques.

Sentiment analysis is a very nice kick-off point as it ranges in complexity from basic dictionary techniques (what we will be using) to intricate deep learning models. The following is an illustrative example of how sentiment is calculated using a news article and a dictionary approach:

From the illustration, we can pick out that the article contains 93 negative words and 42 positive words:

 $\mathcal{A}_{it} = rac{PositiveWords - NegativeWords}{PositiveWords + NegativeWords} \ -0.37 = (42 - 93)/(42 + 93)$

This news article is thus deemed to be mostly negative. Beware, there are directional biases within sentiment analysis and its a good idea to normalise the scores for analysis.

Sentiment analysis in action

Now that we have then basic idea of sentiment analysis using a dictionary approach, lets answer the following question:

- Are the ads for houses more positive than apartments?
- Is there a correlation between price and sentiment?

To conduct this analysis we have to perform the following steps:

1) Transform our text into tokens

2) Remove stopwords

3) Join in a sentiment dictionary

4) Group by advert type and analyse

We start off by turning our text into tokens using unnest_tokens:

```
gumtree %>% select(dwelling_type, description) %>%
unnest_tokens(word, description) %>%
anti_join(stop_words, by = "word")
```

Next, lets use the bing sentiment dictionary to determine the relative sentiment per advert:

```
tidytext::get_sentiments(c("bing", "afinn", "loughran", "nrc")[1])
# A tibble: 10 × 2
# word sentiment
# <chr> <chr> <chr> <chr> 

# 1 trouble-free positive
# 2 displaced negative
# 3 imposers negative
# 4 achievible positive
# 5 temptation negative
# 6 cliche negative
```

Stellenbosch UNIVERSITY IYUNIVESITHI UNIVERSITEIT

Create the sentiment score per ad:

```
gumtree sentiment ← gumtree %>%
  select(ad id, dwelling type, description) %>%
  unnest tokens(word, description) %>%
  anti join(stop words, by = "word") %>%
  left join(get sentiments("bing"), by = "word") %>%
  drop na() %>%
  count(ad id, dwelling type, sentiment, name = "obs") %>%
  pivot wider(names from = "sentiment", values from = "obs",
              values fill = 0) %>%
  mutate(sentiment = (positive - negative)/(positive + negative))
```

[main]>gumtree sentiment

A tibble: 14,562 × 5

#		ad_id	dwelling_type	positive	negative	sentiment
#		<chr></chr>	<chr></chr>	<int></int>	<int></int>	<dbl></dbl>
#	1	00026b744459e17f11d5d66a9634f159	apartment	3	0	1
#	2	000513d19f7999faf08868e98d1a5dde	house	12	\bigcirc	1

3 0007b1cbdc9ef27ad3d663aaa5a11240 house # 4 000a2cd6656b24763bd1fc416ea01b00 house

5 000b5a78eeb86987a0f8f4fba68fd568 house

0.636

0.8

0.5

2

1

9

9

3

Using the sentiment data frame we are now able to test whether adverts for houses are more positive than apartments. To do this, we turn to stats **II**

- Boxplots and Density plots for visual
- Wilcoxon test for same continuous distribution (non-parametric version of a t-test)

Lets start with visual inspections:

```
gumtree_sentiment %>%
ggplot(., aes(dwelling_type, sentiment,
                              fill = dwelling_type)) +
geom_boxplot() +
theme_minimal()
```



```
gumtree_sentiment %>%
ggplot(., aes(sentiment, fill = dwelling_type)) +
geom_density(alpha = 0.5) +
theme_minimal() +
theme(legend.position = "bottom")
```


It is good that we performed the visual inspection as one would have seen two things:

- The data is not normally distributed and as thus, we cannot use a parametric t-test
- There are other categories which we have to filter out

$H_0: S_{apartment} \geq S_{house}$

Topic Modeling

Topic modeling is one of the core tools within Natural Language Processing (NLP). The goal of using topic modeling, is to assist the analyst in order to better segment large pieces of text into various clusters or "topics". A single piece of text will be a mixture of various topics with (hopefully) one of the topics being a dominant feature.

- The analyst has to make a subjective choice on the number of cluster
- Every document is a mixture of topics
- Every topic is a mixture of words

Blei, D.M., 2012. Probabilistic topic models. Communications of the ACM, 55(4), pp.77-84.

Topic Modeling

A flowchart of a text analysis that incorporates topic modeling. The topicmodels package takes a Document-Term Matrix as input and produces a model that can be tided by tidytext, such that it can be manipulated and visualized with dplyr and ggplot2.

See https://www.tidytextmining.com/topicmodeling

Economic and Management Sciences · EyeNzululwazi ngoQoqosho noLawulo · Ekonomiese en Bestuurswetenskappe Hanjo Odendaal (Hanjo@sun.ac.za) 25 / 33

Case Study: Farm descriptions

From tokens to DTM

Topic models need to have some kind of design matrix: **DFM - Document Frequency Matrix** or **DTM - Document Term Matrix**. Luckily for us we already know how to get the count of terms per document!

```
gumtree_dtm ← gumtree_clean %>%
filter(dwelling_type == "farm") %>%
select(ad_id, description) %>%
unnest_tokens(word, description) %>%
anti_join(stop_words, by = join_by(word)) %>%
filter(!grepl("[0-9]+", word)) %>%
count(ad_id, word) %>%
cast_dtm(ad_id, word, n)
# <<DocumentTermMatrix (documents: 76, terms: 3306)>>
# Non-/sparse entries: 9306/241950
# Sparsity : 96%
# Maximal term length: 34
# Weighting : term frequency (tf)
```

How many topics?

In order to find out what K, or number of topics should be, is a bit more of an "art" than a pure science. One can start by looking at some statistics, but they are not absolutes and you will have to use your own judgement when conducting research:

```
library(ldatuning)
result ← FindTopicsNumber(
  gumtree_dtm,
  topics = seq(from = 2, to = 10, by = 1),
  metrics = c("CaoJuan2009", "Deveaud2014"),
  method = "Gibbs",
  control = list(seed = 77),
  verbose = TRUE
)
```

FindTopicsNumber_plot(result)

Run the Model

We can then use the LDA() function to create a four-topic model. This is also mostly driven by theoretical hypothesis. My believe would be we should see: small holdings, citrus farms, wine farms and game farms... lets see if I am correct:

```
gumtree_lda ← LDA(gumtree_dtm, k = 4, control = list(seed = 1234))
gumtree_lda
```

```
# [main]>gumtree_lda
# A LDA_VEM topic model with 4 topics.
```

Now lets analyse the output:

- What words are within the topics?
- Prevalence of each topic in the corpus?

```
topics_beta ← tidy(gumtree_lda, matrix = "beta")
topics_gamma ← tidy(gumtree_lda, matrix = "gamma")
```

Understanding the topics

To understand the topics better we can analyse what words are most prevalent in a topic. This is called the beta matrix:

topics_beta

#	[ma	in]>to	pics_be	eta	
#	# A	tibbl	le: 13,2	224 × 3	
#		topic	term	beta	
#		<int></int>	<chr></chr>	< <i>db</i> l>	
#	1	1	access	2.16e- 3	
#	2	2	access	1.45e- 3	
#	3	3	access	9.67e- 4	
#	4	4	access	3.26e- 3	
#	5	1	approx	5.78e-284	

Lets use slice_max to find the topic 10 words per topic:

```
top_terms ← topics_beta %>%
group_by(topic) %>%
slice_max(beta, n = 5) %>%
ungroup() %>%
arrange(topic, -beta)
```

Understanding the topics

To understand the topics better we can analyse what words are most prevalent in a topic. This is called the beta matrix:

library(ggplot2)

```
top_terms ← topics_beta %>%
 group_by(topic) %>%
 slice_max(beta, n = 10) %>%
 ungroup() %>%
 arrange(topic, -beta)
top terms %>%
```

```
mutate(term = reorder_within(term, beta, topic))
ggplot(aes(beta, term, fill = factor(topic))) +
geom_col(show.legend = FALSE) +
facet_wrap(~ topic, scales = "free") +
scale_y_reordered()
```


Topic Prevalence

To analyse how prevalent a given topic is in the corpus we use the gamma matrix or "topic probability per document". This tells us if a certain topic dominates or not:

```
top terms group \leftarrow top terms %>%
 group by(topic) %>%
 slice max(beta, n = 10) %>%
 summarise(top words = paste0(term, collapse = ","))
topics gamma %>%
 group by(topic) %>%
 summarise(mean gamma = mean(gamma)) %>%
 left join(top terms group) %>%
 mutate(topic = glue("topic ({round(mean gamma, 3)*100}%)")) %>%
 ggplot(., aes(reorder(topic, mean gamma), mean gamma,
                label = top words)) +
 geom col(fill = "#189bcc") +
 geom label() +
 ylim(0, 0.45) +
 labs(x = "Topic", y = "Gamma") +
 coord flip() +
 theme minimal()
```


