
NLP ��
[Dr. Hanjo Odendaal]



Step 1: Install Packages

install.packages("tidytext", Ncpus = 4)
install.packages("quanteda", Ncpus = 4)
install.packages("topicmodels", Ncpus = 4)
install.packages("ggwordcloud", Ncpus = 4)

Step 2: Create Folder for Analysis

Texevier��create_template(directory = "~/Downloads"
                          template_name = "NLP")

Step 3: Create Readme.qmd  �le

���
title: "My readme"
format: html
editor_options:
  chunk_output_type: console
execute:
  echo: false
  eval: false
���

library(tidyverse)
library(targets)
library(dbbasic)
library(tidytext)
library(quanteda)
library(topicmodels)
library(ggwordcloud)

Setup
First things �rst, lets install the necessary packages that we will need in this lesson as well as create the necessary �les to
�t everything in a targets  pipeline:

2 / 33



Step 4: Create .Renviron �le
usethis��edit_r_environ()

gp_data = datascience 
gp_user = datascience
gp_pass = f5VPEC8nsU01QKbSxSfv
gp_host = localhost
gp_port = 3000

Step 6: Restart Rstudio and Test!

db_query(
"SELECT * FROM 

   pg_catalog.pg_tables 
  WHERE schemaname ='public';"
  , db = "psql_datascience")

Setup

3 / 33



Phew

4 / 33



Exploratory Analysis:

Concordancing

• Extraction of words from a given text or texts
conditional on a context window

Ngrams

• Basic word counts from texts
• Creating word clouds from the text

Modeling:

Sentiment Analysis

• Using dictionary methods

Topic Modeling (Bonus)

• Text > Tokens > Document Frequency Matrix > Topic
Model

NLP Basics
In this session we will be exploring the basics of Natural Language Processing:

5 / 33



First things �rst: Data
Our data is currently stored in a cloud Database. Pull the sales data into your session using the dbbasic  package.
Remember to open a dev.sql  �le to test your queries from inside R!:

• Quick look at what the database table contains again:

�� !preview conn=db_connect(db = "psql_datascience")

SELECT * FROM gumtree_clean LIMIT 10;

6 / 33



First things �rst: Data
• What are the different variables within the type  column?

SELECT
type, 
COUNT(*)

FROM gumtree_clean 
GROUP BY

type
LIMIT 10;

• Filter the dataset to only bring in sales into R environment:

gumtree �� db_query(" SELECT * FROM gumtree_clean WHERE type = 'sales'", 
                    db = "psql_datascience")

gumtree_texts �� gumtree %>% select(ad_id, description) %>% 
  mutate(description = tolower(description))

7 / 33



Case Study: 'Ocean'

8 / 33



Concordancing
As mentioned, "concordancing" is where we would like to see what how words a are used in context, or "keywords-in-
contexts" analysis. Let us use the kwic  function from quanteda  to see how the word ocean is used in the text.

ocean_kwic �� kwic(
# define text

  gumtree_texts$description, 
# define search pattern

  pattern = "ocean", 
# define context window size

  window = 5) %>% 
  as_tibble

# [main]>ocean_kwic
# A tibble: 1,772 × 7
#    docname  from    to pre                                    keyword post                                pattern
#    <chr>   <int> <int> <chr>                                  <chr>   <chr>                               <fct>  
#  1 text1      16    16 has views overlooking the open         ocean   , robben island and on              ocean  
#  2 text3     116   116 stunning vistas of the azure           ocean   that greet you from every           ocean  
#  3 text5     134   134 unobstructed views of the atlantic     ocean   from every angle along with         ocean  
#  4 text7      85    85 panoramic views of the atlantic        ocean   and lion's head , emphasising       ocean  
#  5 text7     281   281 views of the majestic atlantic         ocean   . designed with entertainment in    ocean  
# # ℹ 1,762 more rows
# # ℹ Use `print(n = ���)` to see more rows

9 / 33



Concordancing
We can also extract exact phrases, by using the function phrase() :

ocean_kwic �� kwic(
# define text

  gumtree_texts$description, 
# define search pattern

  pattern = phrase("blue ocean"), 
# define context window size

  window = 5) %>% 
  as_tibble

# [main]>ocean_kwic
# A tibble: 6 × 7
#   docname    from    to pre                                  keyword    post                                 pattern   
#   <chr>     <int> <int> <chr>                                <chr>      <chr>                                <fct>     
# 1 text5849     78    79 the view of the wide                 blue ocean stretching to the horizon .          blue ocean
# 2 text6106    124   125 with sliding windows overlooking the blue ocean ! with its stunning ocean            blue ocean
# 3 text6160    100   101 up to the most bright                blue ocean views . neutral colour palette       blue ocean
# 4 text12564    67    68 by the beauty of the                 blue ocean shimmering through glass windows and blue ocean
# 5 text12605   255   256 onto table mountain with the         blue ocean at its feet , complete               blue ocean
# 6 text14439    42    43 sands beach with its beautiful       blue ocean right on your doorstep ?             blue ocean

10 / 33



Concordancing
Exercise time!

• How many instances are there of "swimming pool"?

05�00
11 / 33



Ngrams
Ngrams forms the basis of most text analysis. It is the fundamentals of tokenization or breaking up texts into words or
sequences of words. Lets take our ocean example a little bit further and analyse the top words (after stopwords) within the
contexts of the 'ocean' in property ads.

We are going to use a really nice function from tidytext  called unnest_tokens  for this.

ocean_kwic �� kwic(gumtree_texts$description, pattern = "ocean", 
                   window = 5) %>% as_tibble

• Combine the pre  and post  columns into one:

ocean_pre_post �� ocean_kwic %>% unite("text", c(pre, post)) %>% select(docname, text)

# A tibble: 1,772 × 2
#   docname text                                                                   
#   <chr>   <chr>                                                                  
# 1 text1   has views overlooking the open_, robben island and on                  
# 2 text3   stunning vistas of the azure_that greet you from every                 
# 3 text5   unobstructed views of the atlantic_from every angle along with         
# 4 text7   panoramic views of the atlantic_and lion's head , emphasising

12 / 33



Ngrams
Now that we have our text ready, lets create unigrams  or single word tokens from the text.

ocean_tokens �� ocean_pre_post %>% unnest_tokens(input = text, output = word, n = 1)

#  A tibble: 14,787 × 2
#    docname word       
#    <chr>   <chr>      
#  1 text1   has        
#  2 text1   views      
#  3 text1   overlooking
#  4 text1   the

�� We need to now get rid of stopwords  or words like 'the', 'a' or 'on' as these do not add contextualization.

ocean_tokens �� ocean_tokens %>% 
  mutate(word = gsub("_", "", word)) %>% anti_join(stop_words, by = join_by(word))

# A tibble: 8,890 × 2
#   docname word        
#   <chr>   <chr>       
# 1 text1   views       
# 2 text1   overlooking 
# 3 text1   open
# 4 text1   robben      
# 5 text1   island

13 / 33



ocean_tokens %>% 
  count(word, name = "obs", sort = TRUE) %>% 
  sample_frac(weight = obs, size = 0.1) %>% 
  ggplot(., aes(label = word, size = obs, 
                color = obs)) +
  geom_text_wordcloud() +
  scale_color_gradient(low = "#189bcc", 
                       high = "#960018") +
  scale_size_area(max_size = 20) +
  theme_minimal()

Plotting the word clouds
Once the text is in a nice tidy format, we can now do a lot with it... �rst lets plot the clouds to see what are the words
closely associated around the 'ocean':

14 / 33



ocean_pre_post %>% 
  unnest_tokens(input = text, output = word,
                token = "ngrams", n = 2) %>% 
  mutate(word = gsub("_", "", word)) %>% 
  separate(word, c("word1", "word2"), sep = " ") %>% 
  filter(!word1 %in% stop_words$word) %>%
  filter(!word2 %in% stop_words$word) %>% 
  unite(bigram, word1, word2, sep = " ") %>% 
  count(bigram, name = "obs", sort = TRUE) %>% 
  sample_frac(weight = obs, size = 0.1) %>% 
  ggplot(., aes(label = bigram, size = obs, 
                color = obs)) +
  geom_text_wordcloud() +
  scale_color_gradient(low = "#189bcc", 
                       high = "#960018") +
  scale_size_area(max_size = 20) +
  theme_minimal()

Plotting Bi-Grams (Bonus)

15 / 33



Modeling

16 / 33



From the illustration, we can pick out that the article contains
93 negative words and 42 positive words:

This news article is thus deemed to be mostly negative.
Beware, there are directional biases within sentiment
analysis and its a good idea to normalise the scores for
analysis.

Sentiment analysis in action
Provided that you now have the basics of text analysis and how to get from text > tokens, we can now apply some basic
modeling techniques.

Sentiment analysis is a very nice kick-off point as it ranges in complexity from basic dictionary techniques (what we will be
using) to intricate deep learning models. The following is an illustrative example of how sentiment is calculated using a
news article and a dictionary approach:

Ait =
PositiveWords − NegativeWords

PositiveWords + NegativeWords

−0.37 = (42 − 93)/(42 + 93)

17 / 33



Sentiment analysis in action
Now that we have then basic idea of sentiment analysis using a dictionary approach, lets answer the following question:

• Are the ads for houses more positive than apartments?
• Is there a correlation between price and sentiment?

To conduct this analysis we have to perform the following steps:

1) Transform our text into tokens

2) Remove stopwords

3) Join in a sentiment dictionary

4) Group by advert type and analyse

18 / 33



Sentiment analysis: Houses vs Apartments
We start off by turning our text into tokens using unnest_tokens :

gumtree %>% select(dwelling_type, description) %>% 
  unnest_tokens(word, description) %>% 
  anti_join(stop_words, by = "word")

Next, lets use the bing  sentiment dictionary to determine the relative sentiment per advert:

tidytext��get_sentiments(c("bing", "afinn", "loughran", "nrc")[1])
# A tibble: 10 × 2
#   word         sentiment
#   <chr>        <chr>    
# 1 trouble�free positive 
# 2 displaced    negative 
# 3 imposers     negative 
# 4 achievible   positive 
# 5 temptation   negative 
# 6 cliche       negative

19 / 33



Sentiment analysis: Houses vs Apartments
Create the sentiment score per ad:

gumtree_sentiment �� gumtree %>% 
  select(ad_id, dwelling_type, description) %>% 
  unnest_tokens(word, description) %>% 
  anti_join(stop_words, by = "word") %>% 
  left_join(get_sentiments("bing"), by = "word") %>% 
  drop_na() %>% 
  count(ad_id, dwelling_type, sentiment, name = "obs") %>% 
  pivot_wider(names_from = "sentiment", values_from = "obs", 
              values_fill = 0) %>% 
  mutate(sentiment = (positive - negative)/(positive + negative))

# [main]>gumtree_sentiment
# A tibble: 14,562 × 5
#   ad_id                            dwelling_type positive negative sentiment
#   <chr>                            <chr>            <int>    <int>     <dbl>
# 1 00026b744459e17f11d5d66a9634f159 apartment            3        0     1    
# 2 000513d19f7999faf08868e98d1a5dde house               12        0     1    
# 3 0007b1cbdc9ef27ad3d663aaa5a11240 house                9        2     0.636
# 4 000a2cd6656b24763bd1fc416ea01b00 house                9        1     0.8  
# 5 000b5a78eeb86987a0f8f4fba68fd568 house                3        1     0.5

20 / 33



Sentiment analysis: Houses vs Apartments
Using the sentiment data frame we are now able to test whether adverts for houses are more positive than apartments. To
do this, we turn to stats �����

• Boxplots and Density plots for visual
• Wilcoxon test for same continuous distribution (non-parametric version of a t-test)

21 / 33



gumtree_sentiment %>% 
  ggplot(., aes(dwelling_type, sentiment, 
                fill = dwelling_type)) +
  geom_boxplot() + 
  theme_minimal()

gumtree_sentiment %>% 
  ggplot(., aes(sentiment, fill = dwelling_type)) +
  geom_density(alpha = 0.5) + 
  theme_minimal() +
  theme(legend.position = "bottom")

Sentiment analysis: Houses vs Apartments
Lets start with visual inspections:

22 / 33



Sentiment analysis: Houses vs Apartments
It is good that we performed the visual inspection as one would have seen two things:

• The data is not normally distributed and as thus, we cannot use a parametric t-test
• There are other categories which we have to �lter out

gumtree_sentiment_list �� gumtree_sentiment %>% 
  filter(dwelling_type %in% c("apartment", "house")) 

wilcox.test(sentiment ~ dwelling_type, data = gumtree_sentiment_list, 
            alternative = "less") 

#     Wilcoxon rank sum test with continuity correction
# 
# data:  sentiment by dwelling_type
# W = 19358132, p�value = 0.0006765
# alternative hypothesis: true location shift is less than 0

H0 : Sapartment ≥ Shouse

23 / 33



• The analyst has to make a subjective choice on the
number of cluster

• Every document is a mixture of topics
• Every topic is a mixture of words

Topic Modeling
Topic modeling is one of the core tools within Natural Language Processing (NLP). The goal of using topic modeling, is to
assist the analyst in order to better segment large pieces of text into various clusters or "topics". A single piece of text will
be a mixture of various topics with (hopefully) one of the topics being a dominant feature.

Blei, D.M., 2012. Probabilistic topic models. Communications of the ACM, 55(4), pp.77-84.

24 / 33



Topic Modeling
A �owchart of a text analysis that incorporates topic modeling. The topicmodels package takes a Document-Term Matrix as
input and produces a model that can be tided by tidytext, such that it can be manipulated and visualized with dplyr and
ggplot2.

See https://www.tidytextmining.com/topicmodeling

25 / 33

https://www.tidytextmining.com/topicmodeling
https://www.tidytextmining.com/topicmodeling


Case Study: Farm descriptions

26 / 33



From tokens to DTM
Topic models need to have some kind of design matrix: DFM - Document Frequency Matrix or DTM - Document Term Matrix.
Luckily for us we already know how to get the count of terms per document!

gumtree_dtm �� gumtree_clean %>% 
  filter(dwelling_type �� "farm") %>% 
  select(ad_id, description) %>% 
  unnest_tokens(word, description) %>% 
  anti_join(stop_words, by = join_by(word)) %>% 
  filter(!grepl("[0-9]+", word)) %>% 
  count(ad_id, word) %>% 
  cast_dtm(ad_id, word, n)

# ��DocumentTermMatrix (documents: 76, terms: 3306)��
# Non�/sparse entries: 9306/241950
# Sparsity           : 96%
# Maximal term length: 34
# Weighting          : term frequency (tf)

27 / 33



library(ldatuning)
result �� FindTopicsNumber(
  gumtree_dtm,
  topics = seq(from = 2, to = 10, by = 1),
  metrics = c("CaoJuan2009",  "Deveaud2014"),
  method = "Gibbs",
  control = list(seed = 77),
  verbose = TRUE
)

FindTopicsNumber_plot(result)

How many topics?
In order to �nd out what K, or number of topics should be, is a bit more of an "art" than a pure science. One can start by
looking at some statistics, but they are not absolutes and you will have to use your own judgement when conducting
research:

28 / 33



Run the Model
We can then use the LDA()  function to create a four-topic model. This is also mostly driven by theoretical hypothesis. My
believe would be we should see: small holdings, citrus farms, wine farms and game farms... lets see if I am correct:

gumtree_lda �� LDA(gumtree_dtm, k = 4, control = list(seed = 1234))
gumtree_lda

# [main]>gumtree_lda
# A LDA_VEM topic model with 4 topics.

Now lets analyse the output:

• What words are within the topics?
• Prevalence of each topic in the corpus?

topics_beta �� tidy(gumtree_lda, matrix = "beta")
topics_gamma �� tidy(gumtree_lda, matrix = "gamma")

29 / 33



topics_beta

# [main]>topics_beta
# # A tibble: 13,224 × 3
#    topic term        beta
#    <int> <chr>      <dbl>
#  1     1 access 2.16e�  3
#  2     2 access 1.45e�  3
#  3     3 access 9.67e�  4
#  4     4 access 3.26e�  3
#  5     1 approx 5.78e-284

Lets use slice_max  to �nd the topic 10 words per topic:

top_terms �� topics_beta %>% 
  group_by(topic) %>%
  slice_max(beta, n = 5) %>% 
  ungroup() %>%
  arrange(topic, �beta)

Understanding the topics
To understand the topics better we can analyse what words are most prevalent in a topic. This is called the beta  matrix:

30 / 33



library(ggplot2)

top_terms �� topics_beta %>% 
  group_by(topic) %>%
  slice_max(beta, n = 10) %>% 
  ungroup() %>%
  arrange(topic, �beta)

top_terms %>%
  mutate(term = reorder_within(term, beta, topic)) %>%
  ggplot(aes(beta, term, fill = factor(topic))) +
  geom_col(show.legend = FALSE) +
  facet_wrap(~ topic, scales = "free") +
  scale_y_reordered()

Understanding the topics
To understand the topics better we can analyse what words are most prevalent in a topic. This is called the beta  matrix:

31 / 33



top_terms_group �� top_terms %>% 
  group_by(topic) %>% 
  slice_max(beta, n = 10) %>% 
  summarise(top_words = paste0(term, collapse = ","))

topics_gamma %>% 
  group_by(topic) %>% 
  summarise(mean_gamma = mean(gamma)) %>% 
  left_join(top_terms_group) %>% 
  mutate(topic = glue("topic ({round(mean_gamma, 3)*100}%)")) %>% 
  ggplot(., aes(reorder(topic, mean_gamma), mean_gamma, 
                label = top_words)) +
  geom_col(fill = "#189bcc") +
  geom_label() +
  ylim(0, 0.45) +
  labs(x = "Topic", y = "Gamma") +
  coord_flip() +
  theme_minimal()

Topic Prevalence
To analyse how prevalent a given topic is in the corpus we use the gamma  matrix or "topic probability per document". This
tells us if a certain topic dominates or not:

32 / 33



33 / 33


